ALGEBRAIC IDENTITIES

1. (x + y)2 = x2 + 2xy + y2

2. (x –y)2 = x2 – 2xy + y2

3. x2 – y2 = (x + y) (x – y)

4. (x + a) (x + b) = x2 + (a + b) x + ab

5. (x + y + z)2= x2 + y2 + z2 + 2xy + 2yz + 2zx

6. (x + y)3 = x3 + y3 + 3xy (x + y) or x3 + y3 + 3x2y + 3xy2

7. (x – y)3 = x3 – y3 – 3xy (x – y) or x3 – y3 – 3x2y + 3xy2

8. x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)

9. x3 + y3= (x + y) (x2 –xy + y2)

10. x3 – y3= (x – y) (x2 + xy + y2)

EXERCISE 2.5

1. Use suitable identities to find the following products:
Solution: (i) (x + 4) (x + 10)
(Using identity: (x + a) (x + b) = x2 + (a + b) x + ab)
Here a = 4 , b = 10
(x + 4) (x + 10)
= x2 + (4 + 10) x + (4 x 10)
= x2 + 14x + 40
The product is x2 + 14x + 40

(ii) (x + 8) (x – 10)
Using identity:

(x + a) (x + b) = x2 + (a + b) x + ab

Here a = 8    b = -10

(x + 8) (x – 10) = x2 + (8 – 10) x + 8 (-10)

= x2-2x – 80

The product is x2 – 2x – 80

iii) (3x+ 4) (3x – 5)
Using identity:

(x + a) (x + b) = x2 + (a + b) x + ab

Here x = 3 a = 4, b = – 5

(3x + 4) (3x – 5) = (3x)2 + (4 – 5) 3x + (4) (-5)

=  9x2 – 3x – 20

The product is 9x2 – 3x – 20

  1. v) (3 – 2x) (3 + 2x)

Using identity: (x + y) (x – y) = x2 – y2

Here x = 3, y = 2x

(3 – 2x) (3 + 2x) = (3)2 – (2x)2

= 9 – 4x2

The product is 9 – 4x2

2. Evaluate the following products without multiplying directly:
Solution: i) 103 x 107
103 = (100 + 3) and 107 = (100+7 )
Use identity: (x + a) (x + b) = x2 + (a + b) x + ab
Here x = 100, a = 3, b = 7
(100 + 3) (100 + 7) = (100)2 + (3 + 7)100 + (3) (7)
= 10000 + 1000 +21
= 11021
The product of 13 x 107 is 11021

ii) 95 x 96
Method 1.
95 = 100 – 5, 96 = 100- 4
Use identity; (x + a) (x+ b) = x2 + (a + b) x + ab)
Here a= – 5, b = -4, x = 100
(100 – 5) (100 – 4) = (100)2 + (-5-4)100 + (– 5) (– 4)
= 10000 – 900 + 20
= 9120
The product of 95 x 96 = 9120

Method 2:
95 = 90 + 5 96 = 90 + 6
Use identity: (x + a) (x + b) = x2 + (a + b) x + ab
Here x = 90, a = 5, b = 6
(90 + 5) (90 + 6) = (90)2 + (5 + 6) 90 + (5) x (6)
= 8100 + 990 +30
= 9120
The product of 95 x 96 is 9120

 

iii) 104 x 96
104 = 100 + 4, 96 = 100 – 4
Use identity: (x + y) (x – y) = x2 – y2
Here x = 100, y = 4
(100 + 4) (100 – 4) = (100)2 – (4)2
= 10000 – 16
= 9984
The product of 104 x 96 = 9984

3. Factorize the following using appropriate identities:
Solution: (i) 9×2 + 6xy + y2
(Since it has 3 terms and squares and plus sign)
Identity: a2 + 2ab + b2 = (a + b)2
9×2 + 6xy + y2 a = 3x, b = y
= (3xy)2 + 2 (3x) (y) + (y)2
= (3x + y)2 = (3x + y) (3x + y)

  1. ii) 4y2 4y + 1

(It has squares and 3 terms and minus sign)

4y2 – 4y + 1

Identity: is a2– 2ab + b2 = (a – b)2

= (2y)2 – 2(2y) (1) + (1)2

= (2y – 1)2

= (2y – 1) (2y – 1)

(i) (x + 2y + 4z)2

(It has 3 terms and (bracket)2

Identity: is (a + b + c)2 = a2 + b2 +c2 +2ab + 2bc+ 2ca

Here a = x, b = 2y, c = 4z

(x + 2y + 4z)2

= (x)2 + (2y)2 + (4z)2 + 2(x) (2y) + 2 (2y)(4z) + 2 (4z)(x)

= x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx

  1. ii) (2x – y + z)2

Identity: (a + b + c)2 = a2 + b2 +c2  + 2ab + 2bc + 2ca

Here a = 2x,   b = y,    c = z

\(2xy – y + z)2

= (2x)2 + (y)2 + (z)2 + 2(2x) (-y) + 2(-y) (z) + 2(z) (2x)

= 4x2 + y2 + z2 – 4xy – 2yz + 4xz

 

iii)     ( 2x + 3y + 2z)2

Identity : (a + b + c)2 = a2 + b2 + c2 + 2ab +2bc + 2ca

Here a = – 2x, b = 3y,   c =2z

\(- 2x + 3y + 2z)2

= (- 2x)2 + (3y)2 + (2z)2  + (2) (- 2x) (3y) + 2(3y)(2z) + 2(22) (- 2x)

= 4x2 + 9y2 + 4z2 – 12xy + 12yz  – 8xz

 

(iv)    (3a – 7b – c)2

Identity : (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

Here a = 3a,    b = -7b,    c = – c

\(3a – 7b – c)2

= (30)2 + (-7b)2 + (-c)2 + 2(3a) (-7b) + 2(-7b)(-c) + 2(- c)(3a)

= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac

 

(v)     (2x + 5y – 3z)2

Identity: (a + b + c)2 = a2 + b2 + c2 + 2ab + bc + 2ca

Here a = 2x,    b = 5y,    c = – 3z

(2x + 5y – 3z)2

= (- 2x)2 + (5y)2 + (- 3z)2 + 2(- 2x)(5y) + 2 (5y)(- 3z) + 2(- 3z)(- 2x)

= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12xz

(iv)    (3a – 7b – c)2

Identity : (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

Here a = 3a,    b = -7b,    c = – c

\(3a – 7b – c)2

= (30)2 + (-7b)2 + (-c)2 + 2(3a) (-7b) + 2(-7b)(-c) + 2(- c)(3a)

= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac

(v)     (2x + 5y – 3z)2

Identity: (a + b + c)2 = a2 + b2 + c2 + 2ab + bc + 2ca

Here a = 2x,    b = 5y,    c = – 3z

\(2x + 5y – 3z)2

= (- 2x)2 + (5y)2 + (- 3z)2 + 2(- 2x)(5y) + 2 (5y)(- 3z) + 2(- 3z)(- 2x)

= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12xz

5. Factorize:

(i) (2x + 1)3

It has 2 terms and (bracket)3

Identity: (a + b) = a3 + b3 + 3ab (a + b)

Here a = 2x    b = 1

(2x + 1)3 = (2x)3 + (1) +  3(2x) (1) (2x + 1)

=8x3 + 6x (2x + 1)

= 8x3 + 1 + 12x2 + 6x

= 8 x3 + 12x2 + 6x + 1

(2a = 3b)3

It has two terms and ( )3

Identity: (x + y)3 = x3 – y3 – 3xy (x – y)

Here x = 2a ,    y = 3b

(2a – 3b)3

= (2a)3 – (3b)3 – (3) (2a) (3b) (2a – 3b)

= 8a3 – 27b3 – 18ab (2a – 3b)

= 8a3 – 27b3 – 36a2b + 54ab2

 

6. Write the following cubes in expanded form:
Solution: (i) (2x + 1)3
It has 2 terms and (bracket)3
Identity: (a + b) = a3 + b3 + 3ab (a + b)
Here a = 2x b = 1
(2x + 1)3 = (2x)3 + (1) + 3(2x) (1) (2x + 1)
=8×3 + 6x (2x + 1)
= 8×3 + 1 + 12×2 + 6x
= 8 x3 + 12×2 + 6x + 1

ii) (2a = 3b)3
It has two terms and ( )3
Identity: (x + y)3 = x3 – y3 – 3xy (x – y)
Here x = 2a , y = 3b
(2a – 3b)3
= (2a)3 – (3b)3 – (3) (2a) (3b) (2a – 3b)
= 8a3 – 27b3 – 18ab (2a – 3b)
= 8a3 – 27b3 – 36a2b + 54ab2

 

7. Evaluate the following using suitable identities:

Solution: (i) (99)3

(99)3 = (100- 1)3

Identity: (x – y)3 = x3 – y3 – 3xy (x –y)

Here  x = 100, y = 1

(99)3 = (100 – 1)3

= (100)3 – (1)3 – 3 (100) (1) (100 – 1)

= 1000000 – 1 – 300 (99)

= 1000000 – 1 – 29700

= 1000000 – 29701     = 9702999

(99)3 = 970299

 

ii) (102)3

(102)3 = (100 + 2)3

Identity:(x + y)3 = x3 + y3 + 3xy (x + y)

Here x = 100    y = z

(100 + 2)3 = (100)3 + (2)3 + (3) (100) (2) (100 + 2)

= 1000000 + 8600 (102)

= 1000008 + 61200

= 1061208

(102)3 = 1061208

 

iii)     (998)3

(998)3 = (1000 – 2)3

Identity: (x-y)3 = x3– 43-3xy (x-y)

Here x = 1000          y = 2

(1000-1)3

= (1000)3 – (2)3 – 3(1000) (1) [1000 – 1]

= 1000000000 – 8 – 3000(999)

= 1000000000 – 2997008

= 994011992

 

  1. Factories each of the following:

Solution: (i) 8a3 + b3 + 12a2b + 6ab2

(It is a cube sum and it has 4 terms)

Identity:  (x + y)3 =  x3 + y3 + 3x2y + 3xy2

Here  x = 3 = 2a      y = 3

8a3 + b3 + 12a2 + 6ab2

= (2a)3 + (b)3  + 3 (2a)2  (b) + 3(2a) (b)2

= (2a + b)3

= (2a +b) (2a + b) (2a +b)

 

 

(iii)    27 125a3 135a + 225a2

(It is a cube sum with 4 terms)

Identity :(x  – y)3 = x3 – y3 – 3x2y + 3xy2

Here x  =  = 3    y = 3  = 5a

\ 27 – 125a3 – 135a + 225a2

= (3)3 – (5a)3 – 3(3)2 (5a) + 3(3) (5a)2

= (3 – 5a)3

=   (3 – 5a) (3 – 5a) (3 – 5a)

 

  1. Verify:

Solution:

(i) x3 + y3 = (x + y) (x2 – xy – y2)

= x (x2 – xy + y2) + y (x2 – xy + y2)

= (x3 – x2y + xy2) + (x2y – xy2 + y3)

= x3 – x2y + xy2 + x2y – xy2 + y3

= x3 – y3

L. H. S = R. H. S

 

    (ii) x3 – y3 = (x- y) (x2 + xy + y2)

= x (x2 + xy + y2) – y (x2 + xy + y2)

= (x3 + x2y + xy=) – (x2y + xy2 + y3)

= x3 + x2y + xy2 – x2y – xy2 – y3

= x3 – y3

\L. H. S = R. H. S

 

  1. Factorize each of the following:

Solution: i) 27y3 + 125 z3

= (3y)3 + (5z)3

Identity:a3  + b3 = (a + b) (a2 – ab + b2)

Here a = 3y,   b = 5z

(3y)3 + (5z)3

= (3y  + 5z)  [(3y)2 – (3y) (5z) + (5z)2]

=(3y + 5z) (9y2 – 15yz + 25z2)

 

  1. ii) 64m3 – 343n3

= (4m)3 – (7n)3

Identity: a3 – b3 = (a – b) (a2 + ab + b2)

Here a = 4m,    b = 7n

(4m)3 – (7n)3

= (4m – 7n) [(4m)2 + (4m) (7n) + (7n)2]

= (4m – 7n) (16m2 + 28mn + 49n2)

 

  1. Factories: 27x3 + y3 +  z3 – 9xyz

Solution: 27x3 + y3 + z3 – 9xyz

(It is a cube sum and 4 terms)

Identity: a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2) – ab – bc – ca

27x3 + y3 + z – 9xyz

= (3x)3 + (y)3 + (z)3 – 3 (3x) (y) (z)

Here  a = 3x,   b = y,    c = z

\ 27x3 + y3 – 23 – 9xyz

= (3x + y + z) [(3x)2 + (y)2 + (z)2 – (3x)(y) – (y)(z) – (z) (3x)]

= (3x + y + z) (9x2 + y2 + z2 – 3xy – yz – 3xz)

 

 

  1. If x + y + z = 0, show that x3 + y3 + z= 3xyz.

Solution: Method 1:

The identity is

x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)

= (0) (x2 + y2 + z2 – xy – yz – zx)

(x + y + z) = 0 given)

\x3 + y3 + z3 – 3xyz = 0

x3 + y3 + z3 = 3xyz

 

Method 2:

Given x + y + z = 0

x + y = – z

Cubing both sides we get

(x + y)3 = (-z)3

x3 + y3 + 3xy 9x+ y) = -z3

x3 + y3 + 3xy (-z) = -z3

x3 + y3 – 3 xyz = -z3

\x3 + y3 = -z3 + 3xyz

\x3 + y3 + z3  = 3xyz

 

  1. without actually calculating the cubes, find the value of each of the following:

Solution: (i) (12)3 + (7)3 + (5)3

Let x = – 12, y = 7, z = 5

Now x + y+ z = (-12) + 7 + 5 = 0

If, x + y +z = 0

Then x3 + y3 + z3 = 3xyz

\ (-12)3 + (7)3 + (5) + = 3 (-12) (7) (5)

= (-12) (105)

= -1260

\ (-12)3 + (7)3 + (5)3= -1260

  1. ii) (28)3 + (15)3 + (–13)3

Let x = 28,   y = –15,   z = -13

Now x + y + z = 28 – 15 – 13 = 0

If x + y +z = 0

Then x3 + y3 + z3 = 3xyz

(28)3 + (-15)3 + (-13)3 = 3 (28) (-15) (-13)

= (- 45) x -364

= 16380

\ (28)3 + (-15)3 + (-13)3 = 16380

 

  1. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

Solution: (i) Area = 25a2 – 35a + 12

We know that Area = length x breadth

(We have to factories the area)

25a2 – 35a + 12

25a2 – 15a – 20a + 12

5a (5a – 3) – 4 (5a – 3)

(5a – 3) (5z – 4)

\The length could be (5a – 3) and the breadth could be (5a – 4)

 

(ii). Area = 35y2 + 13y – 12

(Area = length x breadth)

35y2 + 13y – 12

35y2 + 28y – 15y – 12

7y (5y + 4) – 3 (5y + 4)

(5y + 4) (7y – 3)

The possible length is (7y – 3) and the possible breadth is (5y + 4)

 

  1. What are the possible expressions for the dimensions of the cuboids whose volumes are given below.

(i) Volume: 3x2 – 12x

(ii) Volume: 12ky2 + 8ky – 20k

Solution :( i) Volume: 3x2 – 12x

Volume of cuboid = length x breadth x height

Factorizing 3x2 – 12x

=  3x (x – 4)

= (3) (x) (x – 4)

The possible dimensions are 3, (x), (x – 4) units

 

  1. ii) Volume = 12ky2 + 8ky – 20k

Volume of cuboid = length x breadth x height

Factorising 12ky2 + 8ky -20k

= 4k (3y2 + 2y – 5)

= 4k(3y2 + 5y – 3y – 5)

= 4k [y (3y + 5) – 1(3y + 5)]

= (4k)(3y + 5) (y – 1)

\The possible dimensions are (4k), (3y + 5) and (y – 1)