6.6    ADDITIONAL QUESTIONS:

1. Lines AB and CD intersect each other at point O    If ∠ AOD ∶ ∠ BOD = 4 ∶ 5,   Find all the angles

Method 1:       Let the angle measure be ‘x’

( we are given the ratio 4 ∶ 5 which will become 4 x and 5 x )

We know that ∠ AOD + ∠ BOD = 180° ( linear pair )

∴ 4 x + 5 x  =  180°    ⇒       9 x = 180°      ⇒       x = 20°

∴ 4 x  =  4 x 20° = 80°   =  ∠ AOD

∴ 5 x  =  5 x 20°  =  100° =  ∠ BOD

But ∠ AOC = ∠ BOD ( vertically opposite angles are equal )

∴ ∠ AOC = 100°

And ∠ AOD = ∠ BOC ( vertically opposite angles are equal )

∴ ∠ BOC = 80°

So we get   ∠ AOD  =  ∠ BOC  =  80°

And   ∠ AOC  = ∠ BOD =  100°

Method 2:        We know that ∠ AOD + ∠ BOD = 180° ( linear pair )

And  ∠ AOD  ∶  ∠ BOD  =  4 ∶ 5         ( given )

∴  ∠ AOD  =  4/9  x  18°              ( 5 + 4 = 9 )

∴  ∠ AOD  = 80°

Now ∠ AOD  =  ∠ BOC       ( vertically opposite angles are equal )

∴  ∠ BOC  =  80°

Similarly we know that ∠ AOD + ∠ BOD = 180° ( linear pair )

And  ∠ BOC = 80° ( already proved )

∴ ∠ AOC + 80° = 180*

∴ ∠ AOC = 180° – 80° = 100°

And ∠ AOC = ∠ BOD ( vertically opposite angles are equal )

∴ ∠ BOD = 100°

∴We get ∠ AOD  =  ∠ BOC  =  80°

And  ∠ AOC  =  ∠ BOD  =  100°

 

2. In the fig. Ray OD stands on the line AOB. Rays OC and OE are the angle bisectors of ∠ AOD and ∠ BOD respectively. If ∠ AOD = x   find ∠ COE.

Solution:   Ray OD stands on the line  AOB  so we get

∠ AOD + ∠ BOD  =  180°   ( linear pair )

∴ x + ∠ BOD = 180°       ( ∵ ∠ AOD = x )

∴   ∠ BOD = 180° – x

Now  ray  OC bisects  ∠ AOD

∴  we  get  ∠ COD  = ½ ∠ AOD       = ½ x
∴ ∠ COD  = ½ x

Similarly ray OE bisects ∠ BOD

∠ DOE   =   ½ ∠ BOD

∴ ∠ DOE  =  ½   ( 180° – x )

Now we know that

∠ COE   = ∠ COD + ∠ DOE    ( from the fig )

Putting these values from above we get

∠ COE  =  x/2  +  1/2  ( 180° – x )

=  x/2  +  90° − x/2      ⇒       ∠ COE = 90°

6 ) PQ ∥ RS ∥ MN. Also MP ⊥ PQ
If ∠ QMN = 60°. Find the values of x, y, z

Solution:  i ) Consider RS ∥ MN
Here MS becomes the transversal.
∴ y + 60° = 180°°
( because interior angles on the same side of the  transversal are supplementary )
∴ y = 180° – 60°
∴ y = 120°
ii ) Now consider PQ ∥ RS and BD is the transversal z = y
( corresponding angles are equal )
∴z = 120°
iii ) Since PQ ∥ RS and RS ∥ MN we have PQ ∥ MN
MP is the transversal
∠ MPQ + ∠ NMP = 180°
( Interior angles on the same side of the transversal
are equal )
90° + x + 60° = 180°
150° + x = 180° x = 180° – 150°
∴  x = 30°

7 ) Prove that the sum of the angles of a triangle is 180.Prove that the sum of angles of a triangle is 180°. - Sarthaks eConnect |  Largest Online Education Community
Given: PQR is a triangle ( 4 ) x ( 5 )
To prove: ∠ 1 + ∠ 2 + ∠ 3 = 180°
Const:Draw line XPY
Proof: Now since XPY is a line we get
∠ 4 + ∠ 1 + ∠ 5 = 180° – – – – – – – – – –
( Angles on a straight line is 180° )
Line XPY ∥ QR
And PQ is the transversal
∠ 4 = ∠ 2 ( alternate interior angles ) – – – – – – – – – –
( Alternate interior angles  are Z shaped )
Again XPY ∥ QR
And PR is the transversal
∠ 3 = ∠ 5 ( alternate interior angles ) – – – – – – – – –
Substituting the value of ( 2 ) and ( 3 ) in ( 1 )
We get
∠ 4 + ∠ 1 + ∠ 5 = 180°
∠ 2 + ∠ 1 + ∠ 3 = 180° ( ∵ ∠ 4 = ∠ 2 , ∠ 5 = ∠ 3 )
∴ ∠ 1 + ∠ 2 + ∠ 3 = 180°

8 ) In Fig. PQ ∥ ST
∠ QPR = 50° and ∠ RST = 70°, find ∠ SRT.                                                                                                                                         Given:   ∠ QPR = 50° and ∠ RST = 70°                                                                                                                                          To find: ∠ SRT.  = ? 

Proof:  PQ ∥ ST and PT is the transversal
∴ ∠ QPR = ∠ RTS ( alternate interior angles )
∠ RTS = 50° ( ∵ ∠ QPR = 50° given )
PQ°
Consider ⊿RST500
∠ RST + ∠ RTS + ∠ SRT = 180°
70° + 50° + ∠ SRT = 180°
120° + ∠ SRT = 180°
∴ ∠ SRT = 180* – 120° = 60°  70°

( 9 ) In the fig. if AB⊥AD and AB ∥DE
∠ DBC = 40° and
∠ BCE = 70° find the   values of x and y

Solution:   Since AB ∥ DE and BC is the transversal
We get ∠ ABC = ∠ BCE ( alternate interior angles )
x + 40° = 70° ( since ∠ ABC = x + 40° and ∠ BCE = 70° given )
∴ x = 70° – 40°
∴x = 30°
Now consider ∆ ADB
∠ ADB + ∠ DBA + ∠ DAB = 180° ( Angles of a triangle is 180* )
y + x + ∠ DAB = 180° – – – – – – – – – – – – ( 1 )
( But x = 30° proved above )
∠ DAB = 90° since AB ⊥AD
Putting these values in ( 1 ) we get
y + 30° + 90° = 180°
y + 120° = 180°                                                                                                                                                                                          y + 30° + 90° = 180°
y + 120° = 180°
y = 180° – 120°
y = 60°
∴ The values are x = 30°, y = 60* proved

3  )   Transversal and All Angles:

 

(   i  ) Corresponding Angles:

(   a  )    ∠1  and   ∠5         (   b  )   ∠2  and  ∠6

(  c  )    ∠4  and   ∠8         (   d  )   ∠3  and  ∠7

Just add the value 4 to the angle and you will get the corresponding angle

Also remember 1 + 4 = 5
So ∠ 1 and ∠ 5 }           And 2 + 4 = 6
So ∠ 2 and ∠ 6 }          And 3 + 4 = 7
So ∠ 3 and ∠ 7 }           And 4 + 4 = 8
So ∠ 4 and ∠ 8 }

( ii ) Alternate Interior Angles.
As the name suggests these angles should be
Alternate and  interior  ( inside )

So the alternate interior angles are
( i ) ∠ 4 and ∠ 6     ( ii )  ∠ 3 and ∠ 5

( iii ) Alternate Exterior Angles.
As the name suggests these angles should be
Alternate and exterior   ( outside)

So the alternate exterior angles are
( i ) ∠ 1 and ∠ 7     ( ii ) ∠ 2 and ∠ 8

( iv ) Interior Angles on the same side of the transversal.
As the name suggests these angles are ( i ) inside ( ii ) on the
left side and right side of the transversal.

So interior angles on the same side of the transversal are
( i ) ∠ 4 and ∠ 5     ( ii ) ∠ 3 and ∠ 6

Interior angles on the same side of the transversal are also called

consecutive angles, allied angles or co – interior angles.

i ) If a ray stands on a line then the sum of two adjacent angles formed is 180°.
Eg. Ray OS stands of the line POQ
∴ ∠ POS + ∠ SOQ = 180°

ii ) If two lines intersect each other then the vertically opposite angles are equal
eg.  Two lines AB and BC intersect at point O
∴   ∠ AOD  =  ∠ BOC    and
∠ AOC  =  ∠ BOD

( ii ) If a transversal intersects two parallel lines then each pair
Of corresponding angles are equal
Eg. The corresponding angles are
a )  ∠ 1 and ∠ 5              b )  ∠ 2 and ∠ 6
c )  ∠ 3 and ∠ 7              d )  ∠ 4 and ∠ 8
( These same angles will be equal to each other if
The line ‘l’ and ‘m’are parallel )
If line l ∥ m then
∠ 1  =  ∠ 5,         ∠ 2  = ∠ 6,      ∠ 3 = ∠ 7,       ∠ 4 =  ∠8