EXERCISE 3.3

**1). Using divisibility tests, determine which of the following numbers are divisible by 2; by 3; by 4; by 5; by 6; by 8; by 9; by 10; by 11; (say yes or no):**

Number Divisible by | |||||||||

2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | |

128 | Yes | No | Yes | No | No | Yes | No | No | No |

990 | Yes | Yes | No | Yes | Yes | No | Yes | Yes | Yes |

1586 | Yes | No | No | No | No | No | No | No | No |

275 | No | No | No | Yes | No | No | No | No | Yes |

6686 | Yes | No | No | No | No | No | No | No | No |

639210 | Yes | Yes | No | Yes | Yes | No | No | Yes | Yes |

429714 | Yes | Yes | No | No | Yes | No | Yes | No | No |

2856 | Yes | Yes | Yes | No | Yes | Yes | No | No | No |

3060 | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | No |

406839 | No | Yes | No | No | No | No | No | No | No |

**2). Using divisibility tests, determine which of the following numbers are divisible by 4; and 8;**

a) 572

**Ans.** 72 is the last two digits. Since 72 is divisible by 4. Hence, 572 is also divisible by 4. 572 is the last three digits. Since 572 is not divisible by 8, it is not divisible by 8.

b) 726352

**Ans.** 52 is the last two digits and is divisible by 4 \ the number 726352 is divisible by 4. 352 is the last three digits and is divisible by 8 \ 726352 is divisible by 8.

c) 5500

**Ans. **00 are the last 2 digits \ 5500 is divisible by 4. 500 is the last 3 digits which is not divisible by 8. Hence 5,500 is not divisible by 8.

d) 6000

**Ans.** 00 is the last 2 digits. Hence 6000 is divisible by 4. 000 is the last 3 digits. Hence 6000 is divisible by 8.

e) 12159

**Ans.** Since the last 2 digits 59 is not divisible by 4 \ the 12159 is not divisible by 4\12159 is not divisible by 4. Since the last 3 digits 159 are not divisible by 8.

∴ 12159 is not divisible by 8.

f) 14560

**Ans.** Since the last 2 digits 60 is divisible by 4, 14560 is divisible by 4. Since the last three 3 digits 560 is divisible by 8, 14560 is divisible by 8.

g) 21084

**Ans. **Since 84 is divisible by 4, 21084 is divisible by 4. Since 084 is not divisible by 8, 21084 is not divisible by 8.

h) 31795072

**Ans.** Since 72 is divisible by 4, 31795072 is divisible by 4. Since 072 isdivisible by 8, 31795072 is divisible by 8.

i) 1700

**Ans.** Since the last two digits are 00, 1700 is divisible by 4. Since 700 is not divisible by 8, 1700 is not divisible by 8.

j) 2150

**Ans.** Since 50 is not divisible by 4, 2150 is not divisible by 4. Since 150 is not divisible by 8, 2150 is not divisible by 8.

**3). Using divisibility tests, determine which of the following numbers are divisible by 6**

a) 297144

**Ans.** Since the last digit 4 is divisible by 2, 297144 is divisible by 2. Adding all the digits of the number we get 27 which is a multiple of 3 ∴297144 is divisible by 2 and 3 and hence divisible by 6.

b) 1258

**Ans.** Since 8 is divisible by \1258 is divisible by 2 adding all the digits we get 16 which is not divisible by 3 \ 1258 is not divisible by 3. Since 1258 is not divisible by 2 and 3 both, the number is not divisible by 6.

c) 4335

**Ans.** Since 5 is not divisible by 2, 4335 is not divisible by 2. The Sum of all digits of the number is 15 which is divisible by 3, \4335 is divisible by 3. Since the number is not divisible by 2 and 3 both, 4335 is not divisible by 6.

d) 61233

**Ans. **Since 3 is not divisible by 2, 61233 is not divisible by 2. The Sum of all the digit of the number is 15 which is divisible by 3. Hence 61233 is divisible by 3.

Since the number is not divisible by 2 and 3 both, 61233 is not divisible by 6.

e) 901352

**Ans.** Since 2 is divisible by 2, 901352 is divisible by 901352. The Sum of all the digits of the number is 20.which is not divisible by 3 ∴901352 is not divisible by 3. Since the number is not divisible by 2 and 3 both, 901352 is not divisible by 6.

f) 438750

**Ans.** Since the last digit is 0, the number is divisible by 2. The Sum of all the digits is 27 which is divisible by 3 \the number is divisible by 3. Since the number is divisible by 2 and 3 both, 438750 is divisible by 6.

g) 1790184

**Ans.** Since 4 is divisible by 2, the number is divisible by 2. Sum of all the digits is 30, which is divisible by 3 \ the number is divisible by 3. Since the number is divisible by 2 and 3 both, 1790184 is divisible by 6.

h) 12583

**Ans.** Since 3 is not divisible by 2, the number is not divisible by 2. Sum of all the digits is 19 which is not divisible by 3 \12583 is not divisible by 3. Since the number id not divisible by 2 and 3, 12583 is not divisible by 6.

i) 639210

**Ans.** Since the last digit is 0, the number is divisible by 2. Sum of all the digits is 21 which is divisible by 3 \the number is divisible by 3. Since the number is divisible by 2 and 3, 639210 is divisible by 6.

j) 17852

**Ans.** Since 2 is divisible by 2, 17852 is divisible by 2. Sum of all the digits is 23 which is not divisible by 3 \17852 is not divisible by 3. Since the number is not divisible by 2 and 3, 17852 is not divisible by 6.

**4). Using divisibility tests, determine which of the following numbers are divisible by 11.**

a) 5445

**Ans.** Sum of the digits at odd places = 5 + 4 = 9

Sum of the digits at even places = 4 + 5 = 9

Difference = 9 – 9 = 0

Since the difference is 0, 5445 is divisible by 11.

b) 10824

**Ans.** Sum of all the digits at odd places = 4 + 8 + 1 = 13

Sum of all the digits at even places = 2 + 0 = 2

Difference = 13 – 2 = 11

Since the difference is 11 which is divisible by 11, 10824 is divisible by 11.

c) 7138965

**Ans.** Sum of the digits at odd places = 5 + 9 + 3 + 7 = 24

Sum of the digits at even places = 6 + 8 + 1 = 15

Difference = 24 – 15 = 9

Since the difference 9 is not divisible by 11, 7138965 is not divisible by 11.

d) 70169308

**Ans.** Sum of all the digits at odd places = 8 + 3 + 6 + 0 = 17

Sum of all the digits at even places = 0 + 9 + 1 + 7 = 17

Difference = 17 – 17 = 0

Since the difference is 0, 70169308 is divisible by 11.

e) 10000001

**Ans. **Sum of digits at odd places = 1 + 0 + 0 + 0 = 1

Sum of digits at even places = 0 + 0 + 0 + 1 = 1

Difference = 1 – 1 = 0

Since the difference is 0, 10000001 is divisible by 11.

f) 901153

**Ans.** Sum of digits at odd places = 3 + 1 + 0 = 4

Sum of digits at even places = 5 + 1 + 9 = 15

Difference 15 – 4 = 11

Since the difference is 11, which is divisible by 11, 901153 is divisible by 11.

**5). Write the smallest digit and the largest digit in the blank space of each of the following numbers so that the number is divisible by 3:**

**a)……6724**

**Ans.** Sum of the given digits = 19 (consider nos. from 0 – 9) on adding 2 to 19 we get 2 + 19 = 21 which is divisible by 3. Hence 2 is the smallest number.

Sum of the digits = 19

On adding 9 we get 19 + 9 = 28 which is not divisible by 3.

On adding 8 we get 19 + 8 = 27 which is divisible by 3.

∴8 is the greatest digit.

b)4765……2

**Ans.** Sum of the given digits = 24.

Since 24 is already divisible by 3, the smallest no. that can be replaced is 0. On adding 9 to the sum we get, 9 + 24 = 33. Which is divisible by 3. ∴9 is the greatest no.

**6). Write a digit in the blank space of each of the following numbers so that the number is divisible by 11:**

a) 92…….389

**Ans.** let ‘x’ be the no. to be placed here

Sum of digits at odd places = 9 + 3 + 2 = 14

Sum of digits at even places = 8 + x + 9 = 17 + a

Difference = 17 + a – 14 = 3 + a

If the difference is 0 or divisible by 11, then the no. is divisible by 11.

At a = 8, 3 + 8 = 11 which is divisible by 11 \the required digit is 8.

b) 8…….9484

**Ans.** let ‘x’ be the no. to be placed

Sum of digits at odd places = 4 + 4 + x = 8 + x

Sum of digits at even places = 8 + 9 + 8 = 25

Difference = 25 – (8 + x) = 17 – x

If the difference is 0 or divisible by 11, then the no. is divisible by 11at a = 6, 17 – 6 = 11 which is divisible by 11 \The required digit is 6.