8.2  PROPERTIES OF QUADRILATERALS:

  • Properties of parallelograms:
  • Opposite sides are equal and parallel
  • Opposite angles are equal
  • Diagonals bisect each other
  • Each diagonal divides the parallelograms into two congruent triangles.
  • Properties of Rectangle:
  • Opposite sides are equal and parallel.
  • Each angle is 900
  • Diagonals are of equal length and bisect each other.
  • Each diagonal divides the rectangle into two congruent triangle
  • Properties of Rhombus:
  • All sides are of equal length.
  • Opposite angle are equal.
  • Diagonals bisect each other at right angles.
  • Each diagonal divides the rhombus into two congruent triangles.
  • Properties of Square:
  • All sides are of equal length.
  • Each angle is 900
  • Diagonals are of equal length and bisect each other at right angles.
  • Each diagonal divides the square into two congruent triangles.

Exercise 8.1

  1. The angles of quadrilateral are in the ration 3 : 5 : 9 : 13. Find all the angles of the quadrilateral.

Solution:  Let the multiplicative value of the ratio be  x.

The ratio   3 : 5 : 9 : 13   becomes   3 x,   5 x,    9 x,   13 x.

Sum of all the angles of a quad  is  3600

3 x  +  5 x  +  9 x  +  13 x  =  3600

30 x  =  360°    ⇒     x = 120

∴  The first angle is 3 x        =  3 x 12  =  360

∴  The second angle is 5 x   =  5 x 12  =  600

∴  The third angle is 9 x      =   9 x 12  =  1080

∴  The second angle is 13 x  = 13 x 12  = 1560

∴  The four angles are  360,  600,  1080,  1560

2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Given :  AC  =  BD

To prove:   ABCD is a rectangle

Proof:    In Δ DAB and Δ CBA

AD  =  BC    (opposite sides of a parallelogram)

AC  =  BD    (given)

By S.S.S congruence rule

Δ DAB   ≅  Δ CBA

∠DAB  =  ∠CBA            (c.p.c.t) ————– (1)

Since ABCD is a parallelogram

AD   is parallel to BC and AB is the transversal .

∠DAB + ∠CBA  = 1800 (sum of interior angles on same side of transversal is 1800)       ———–    (2)

From   (1)   and   (2)   we get

∠DAB  =  900     and      ∠ CBA  =  900

Hence the parallelogram is a rectangle.

3.Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Given:  ∠AOB  =  ∠BOC  =  ∠COD   =   ∠DOA   =   900

To prove : AB  =  BC  =  CD  =  DA

Proof:     In    Δ AOB    and    Δ AOD,    we    have

AD   =   AD    ( common side )

OB  =  OD    (O is midpoint of BD)

Δ AOB   =   Δ AOD     (given)

By S.A.S. congruence rule

Δ AOB     ≅     Δ AOD   So their corresponding parts are equal

AD  =  AB,     AB  =  BC,    BC =  CD,     CD  =  AD

So we have   AB  =  BC  =  CD  =  DA

Thus the quadrilateral ABCD is a rhombus.

4. Show that the diagonals of a square are equal and bisect each other at right angles.

Given:  AB  =  BC  =  CD  =  DA     (all sides of a square are equal)

A  =  B  =  C  =  D  =  900      (angles of a square)

To prove:  (i)   AC  =  BD

(ii)  OA  =  OC   and   OB  =  OD

(iii)  ∠AOB  =  ∠BOC  =  ∠COD  =  ∠AOD = 900

Proof:  In  Δ ABC  and  Δ BAD  we have

AB  =  AB               (common side)

BC  =  AD               (opposite sides of square)

∠ABC  =  ∠BAD         (each  = 900)

By S.A.S congruence rule we get    Δ ABC  ≅   Δ BAD

∴   AC = BD                     (c.p.c.t)

(ii)  AD is parallel to BC and AC is the transversal.

∠1 = ∠3   and    ∠2 = ∠4            (interior alternate angles)

In   Δ OAD   and   Δ OCB   we  have

AD  =  BC             (opposite sides of a square)

∠1  =  ∠3    and     ∠2  =  ∠4    ( both are proved )

Δ OAD    ≅  Δ OCB

( By  A.S.A  congruence  rule )

OA  =  OC        and    OD  =  OB        ( both are c.p.c.t.)

(iii)  In  ΔOBA   and   ΔODA   we have

AB  =  AD                 (opposite sides of a square)

OB  =  OD                (proved)

OA  =  OA               (common side)

By S.S.S congruence rule  we get ,

ΔOBA    ≅     ΔODA

∠AOB   =   ∠AOD               (c.p.c.t)

But  ∠AOB   +  ∠AOD  =  1800             (linear pair)

∠AOB   =    ∠ AOD   =   90°         ⇒       AC    =    BD

From above we get AC and BD are equal and bisect each other at right angles.

5.  Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Given:  AC  =  BD  and    ∠AOB  =  ∠BOC  =  ∠COD  =  ∠AOD  =  900

To prove:  (i)  AD =  BC = AB = DC     and      AB = BC = CA = AD

(ii)  ∠DAB = ∠ABC  =  ∠BCD  =  ∠CDA  =  900

Proof:  In   Δ AOD  and   Δ AOB  we  have

AO  = AO                  (common side)

OD = OB                  (O is the mid point of AB)

∠AOD  =  ∠AOB              (each  angle is 90)

By S.A.S. congruence rule we have

Δ AOD   ≅  Δ AOB      ∴ Their corresponding parts are equal

AD = AB,    AB = BC,     BC = CD,       CD = DA

AB   =  BC   =   CA  =  DA ———-(1)                    (All four sides are equal)

In  ΔAOD   and    ΔCOB  we  have

AO  =  CO    and      OD  =  OB       ( both are given )

∠AOD  =  ∠COB   (each   is 900 )   and  so  we   get Δ AOD    ≅  Δ COB

But they are a pair of interior alternate angles

AD =  BC    ————(2)

Similarly we can show AB  =  DC   ———- (3)

From (1), (2) and (3) we can say that

All four sides are equal and opposite sides are also parallel to each other

(ii)  In Δ ABC and Δ BAD we have       AC  =  BD         (given)

BC  =  AD          (proved)          and       AB  =  BA         (common side)

By S.S.S congruence rule we get          ∠ABC   = ∠BAD

Since AD  is parallel to  BC and AB is a transversal

∠ABC  +  ∠BAD = 1800                interior opposite angles  =  180° )

Since  ∠ ABC    =  ∠BAD   we get      Δ ABC  ≅  Δ BAD          (c.p.c.t)

∠ABC   =   ∠BAD   =   90°         and        similarly  we   get  ∠ADC   =   ∠BCD   =  900

6.  Diagonal AC of a parallelogram ABCD bisects ∠A  (see fig.8.19). Show that                                                               (i) it bisects  ∠C also.                 (ii)  ABCD is a rhombus.

Given:    ∠DAC  =  ∠BAC                ( AC bisects ∠A )

To prove:  (i)  ∠DCA  =  ∠BCA     (AC bisects ∠C )                                                         (ii)  ABCD is a rhombus

Proof:  Since ABCD is a parallelogram

(i)  AB  is parallel to DC and AC is the transversal

∠ 1 = ∠3     (interior alternate angles)   ——- (1)

Also BC is parallel to DA and AC is the transversal

∠2 = ∠4     (interior alternate angles)   —— (2)

But it is given that    ∠DAC = ∠BAC      ⇒   ∠1 = ∠2              ——- (3)

From  (1),  (2) and  (3)  we get        ∠3   =   ∠4

∠DCA  = ∠BCA   ( AC bisects ∠C )

(ii)  In  ABC  we  get    ∠1  =  ∠4  ( proved )

BC = AB   ( sides opposite to equal angles )      ——- (4)

∠2 = ∠3       (proved)

AD = DC   ( sides opposite to equal angles )       ——  (5)

But we are given that ABCD is a parallelogram

And   so   AB = DC  ———– (6)

From    (4),   (5)   and  (6)  we get

AB  =  BC  =  CD  =  DA        ∴    ABCD is a rhombus.

7.  ABCD is a rhombus. Show that diagonal AC bisects A as well as C and diagonal BD bisects B as well as D.

Given:  ABCD  is  a  rhombus.

To prove:     (i)  AC bisects A and C     and     (ii)  BD bisects B and D.

Proof:  In  Δ ADC    and    Δ ABC

AD = AB        (sides of a rhombus)

CD = CB       (sides of a rhombus)

AC = AC       (common side)

By S.S.S. congruence test we get     ∆ ADC   ≅  ∆ ABC.

Their corresponding parts are equal.

∠DAC   =  ∠BAC     and       ∠DCA   =  ∠BCA         (c.p.c.t)

Hence AC bisects the two angles    ∴ ∠ A  = ∠C.

Similarly take  Δ BAD  and  Δ BCD   and show that  BD  bisects the two angles    ∴ ∠B  = ∠D.

8. ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C.                                                                      Show that (i) ABCD is a square   (ii) diagonal BD bisects B as well as D.

Given:  (i)  ABCD is a rectangle  and  (ii) AC  bisects ∠A  and ∠C

To prove:  (i)  ABCD is a square    and  (ii)  Diagonal BD bisects B  and D

Proof:  In  Δ ADC  and  Δ ABC  we  have

∠DAC  = ∠BAC     ( AC is bisector of ∠A )

∠DCA  = ∠BCA     ( AC is the bisector of ∠C )

AC = AC   ( common side )

∆ ADC  ≅  ∆ ABC       ( By A.S.A congruence rule. )

Their corresponding parts are equal and so we get   AD = AB    (c.p.c.t)

So in rectangle ABCD if adjacent sides are equal then we can say that  ABCD is a square.

(ii)  In  ΔDAB  and  ΔBCD  we have

AD = BC    and   CD = DA  (both are opposite sides of a square)

BD = BD   (common side)

By S.S.S. congruence test,      we get ∆ DAB  ≅ ∆ DCB

Now we get  ∠ADB  = ∠ CDB   and  ∠ABD  = ∠CBD

( both the corresponding parts are equal of the above two triangles )

So we can say that  ∆ ADC  ≅  ∆ ABC

BD bisects  both ∠B  and  ∠D and so we get  ∠B  = ∠D

9. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ  (see Fig.8.20).   Show that   (i) ΔAPD  ≅  ΔCQB             (ii) AP  =  CQ                (iii)  ΔAQB  ≅  ΔCPD                                                                                      (iv) AQ  =  CP                       (v) APCQ is a parallelogram.

Given:    DP = BQ

To prove:   (i) ∆ APD ≅ ∆ CQB     (ii) AP = CQ   (iii) ∆ AQB ≅ ∆ CPD                      (iv)  AQ = CP                (v) APCQ is a parallelogram.
Proof:  Consider  ∆ APD  and  ∆ CQB

Since ABCD is a parallelogram and AD ∥ BC
and BD is the transversal we get

∠CBQ  =  ∠ADP (interior alternate angles)
AD = CB   (opposite sides of a parallelogram)
PD = QB    (given)
By  S.A.S  congruence  rule  we  get
∆ APD  ≅  ∆CQB

(ii) ∆ APD  ≅  ∆CQB      ( proved)                                                                                                                                             Their Their corresponding parts are equal and
∴ AP  =  CQ         (c.p.c.t)

(iii) In   ∆ AQB  and  ∆CPD
Since ABCD is a parallelogram and AB ∥ CD and BD is the transversal
∠ABQ = ∠CDP          ( alternate interior angles )
QB = PD   ( given )   and   AB = CD        ( opposite sides of parallelogram )
By S.A.S congruence rule  we get   ∆ AQB   ≅  ∆ CPD

(iv) ∆ AQB  ≅  ∆CPD  ( proved )
Their corresponding parts are equal
∴ AQ = CP    (c.p.c.t).

(v) Join AC. Now,  since the diagonals of a parallelogram bisect each other we get
AO  =  CO ————(1)
And BO = DO   (diagonals of a parallelogram bisect each other)
∴  QO  =  OP                 ( BQ = DP    is   given) ————- (2)
From  (1)  and  (2)  we get
AO  =  CO  and    QO  =  PO
AC and QP  bisect each other at O
∴ APCQ  is  a  parallelogram.

10. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD                (see Fig.8.21). Show that  (i) ΔAPB  ≅ Δ CQD             (ii)  AP = CQ

Given:  (i) BD is a diagonal          (ii) ABCD is a parallelogram
(iii) AP ⊥ BD   and  CQ ⊥ BD
To prove:    (i) ∆ APB  ≅  ∆CQD       (ii)  AP = CQ
Proof: In ∆ APB  and  ∆ CQD   we have
∠APB = ∠CQD    (  both are 90° each )
AB = CD       (opposite sides of a parallelogram)
∠APB = ∠CQD        (AB ∥ CD and AB is transversal so interior  angles are equal)
By A.A.S congruence rule we get
∆ APB  ≅  ∆ CQD
(ii) Since ∆ APB  ≅  ∆ CQD their corresponding parts are equal
∴  AP  =  CQ    (c.p.c.t)

11. In ABC and DEF, AB = DE, AB  DE, BC = EF and BC is parallel to  EF.  Vertices A, B and C are joined to vertices D, E and F respectively.

Show that (i) quadrilateral ABCD is a parallelogram.               (ii) quadrilateral BEFC is a parallelogram                                 (iii) AD  is parallel to CF  an d AD = CF                                              (iv) quadrilateral ACFD  is a parallelogram                                     (v) AC = DF     and     (vi) ΔABC ≅ ΔDEF

Given: (i)  AB = DE  (ii)  BC = EF    and  (iii)  BC ∥ EF               To prove:  (i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) AD ∥ CF and AD = CF
(iv) quadrilateral ACFD is a parallelogram
(v) AC = DF         (vi)  ∆ ABC  ≅  ∆ DEF
Proof: AB = DE (given)     and      AB ∥ DE (given)
A quadrilateral in which a pair of opposite sides is equal and parallel then it is a parallelogram
∴ ABED is a parallelogram

(ii)  BC = EF   (given)   and    BC ∥ EF   (given)
A quadrilateral in which a pair of opposite sides is equal and parallel then it is a parallelogram
∴BECF is a parallelogram

(iii) Since ABED is a parallelogram      (proved)
AD ∥ DE and AD = BE ———–(1)
Again since BEFC is a parallelogram   (proved)
BE ∥ CF and BE = CF ———–(2)
(opposite sides are equal and parallel in (1) and (2) )
From (1) and (2) we get   AD ∥ CF and AD = CF

(iv) AD ∥ CF and AD = CF
A quadrilateral in which a pair of opposite sides is equal and parallel then it is a
parallelogram         ∴  ACFD is a parallelogram

(v) Since ACFD is a parallelogram    (proved)
Its opposite sides are parallel and equal
∴   AC  = DF

(vi) In ∆ ABC  and  ∆DEF  we have
AB = DE    (given)  and   BC = EF    (proved)    and   AC = DF   (proved)
By S.S.S congruence rule we get
∆ ABC   ≅  ∆ DEF

12. ABCD is a trapezium in which AB ∥ CD and AD = BC (see Fig.8.23). Show that    (i) ∠A = ∠B       (ii) ∠C = ∠D   (iii) ∆ ABC  ≅  ∆BAD    (iv) diagonal AC = diagonal BD                                                                                                            (Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E )

Given:   (  i )  AB ∥ CD       and     (ii) AD = BC
To prove:   (i) ∠A = ∠B        (ii) ∠C = ∠D
(iii) ∆ ABC  ≅  ∆ BAD                   (iv) diagonal AC = diagonal BD
Const: Extend AB and draw a line through C parallel to DA                   intersecting AB produced to E
Proof:    (i) AB ∥ CD  and  AD = BC    ( given )
and AD ∥ CE and AE ∥ DC    ( by construction )
∴   AECD is a parallelogram
AD = CE     ( opposite sides of parallelogram AECD )
AD = BC    (given)
∴ We  get  BC  = CE
∴   ∠CBE  =  ∠CEB    (angles opposite to equal sides are equal) —-   (1)
∴   ∠ABC  + ∠CBE = 180°          ( linear pair ) ———– (2)
∠CEB  + ∠A  = 180°       (adjacent angles of a parallelogram = 180° )   —–  (3)
From (2) and (3) we get
∠ABC + ∠CBE  =  ∠CEB + ∠A
∴ ∠ABC = ∠A   ( since ∠CBE  =  ∠CEB   (  proved  )
∴  ∠B =∠A        ∴  ∠A =∠B

(ii) AB ∥ CD and AD is transversal
∴  ∠A +∠D = 180° (interior opposite angles sum is 180°)
Similarly ∠B +∠C = 180° (interior opposite angles sum is 180°)
∴ ∠A  + ∠D  =  ∠B +  ∠C
∠D  = ∠C       ( since ∠A = ∠B   already proved ))
∴ ∠C  =  ∠D

(iii)  In ∆ ABC and ∆BAD we get
AB = BA    (common side )
BC = AD   ( given )
∠ABC = ∠A = ∠BAD   (proved)
∴   ∆ ABC  ≅  ∆BAD        ( By  S.A.S  congruence rule )

(iv)  We know that ∆ ABC  ≅  ∆BAD
Their corresponding parts are equal
∴  AC = BD     ( diagonals )   (c.p.c.t)