8.3 THE MID POINT THEOREM:

The midpoint theorem states that the line segment joining the line segment joining the mid points of two sides of a triangle is parallel to the third side.

The line drawn through the mid point of one side of a triangle parallel to another side bisects the third side.

Exercise 8.2

1. ABCD is a quadrilateral in which P,Q, R and S are mid-point of the sides AB, BC, CD and DA and AC is a diagonal. Show that : (i) SR ∥ AC and SR = 1/2 AC       (ii) PQ = SR               (iii) PQRS is a parallelogram.

Given: (i) RC = RD              (ii) SD = AS
(iii) AP = PB                          (iv) QC = QB
To prove:   (i) SR ∥ AC  and  SR = 1/2 AC
(ii)  PQ = SR                (iii)  PQRS is a parallelogram
Proof:   (i) In ∆ ACD we have S and R as the mid-point of sides AD and DC respectively.
We know that a line segment joining the mid-points of two sides of a triangle is parallel to the third side and is half of it.
∴ SR ∥ AC and SR = 1/2 AC

(ii) From (i) we get SR ∥ AC and SR = 1/2 AC               ——— (1)
Consider ∆ ABC we have P and Q as mid-points of sides AB and BC respectively.
∴ PQ ∥ AC and PQ = 1/2 AC           (mid-point theorem) ————(2)
From (1) and (2) we get
SR ∥ PQ and SR = PQ
∴   SR = PQ

(iii) Now SR  =  PQ          (proved)
And SR ∥ PQ
∴ PQRS is a parallelogram

2. ABCD is a rhombus and P, Q, R and S are the midpoints AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

Given: ABCD is a rhombus
P, Q, R and S are the midpoints AB, BC, CD and DA respectively
To prove: PQRS is a rectangle
Proof: First  we have to prove that PQRS is a parallelogram
and then  we have to prove that PQRS is a rectangle
(i)   Consider ∆  ACD,
S and R are the mid-points of sides AD and DC respectively
(By mid-point theorem statement)
SR ∥ AC and SR = 1/2 AC                           ————-(1)
Consider ∆ABC,
P and Q are the mid-points of sides AB and BC respectively
(By mid-point theorem statement)
PQ ∥ AC    and     PQ = 1/2 AC                      ———–(2)
From (1)   and   (2) we get
SR ∥ AC   and   PQ ∥ AC    →   SR ∥PQ      –             ———-(3)
And SR = 1/2 AC   and   PQ = 1/2AC    →   SR = PQ                 ———(4)
From  (3)  and (4)  we get    PQRS  is a parallelogram

(ii) As  PX ∥ YO   and   PY ∥ OX
We get PXOY  is a parallelogram
Since ABCD is a rhombus we know that diagonals of a rhombus (AC and BD) bisect each other and are at             right angles      ∴  ∠AOB  =  ∠YOX  = 90°
But ∠YOX  =  ∠YPX  = 90° (opposite angles of a parallelogram)
∴  ∠YPX  =  ∠SPQ  =  90°
∴    PQRS is a rectangle.

3. ABCD is a rectangle and P, Q, R and S are the midpoints AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Given:  ABCD is a rectangle
P, Q, R and S are the midpoints AB, BC, CD and DA
To prove : The quadrilateral. PQRS is a rhombus
Const: Join AC

Proof:    We have to first prove that PQRS is a parallelogram and
then we can prove that PQRS is a rhombus
(i)  In   ∆ ABC  we have
PQ = 1/2 AC   and   PQ ∥ AC       —-(1)     (mid-point theorem)
In   ∆ ACD  we  have,
SR = 1/2 AC   and   SR ∥ AC        —-(2)     (mid-point theorem)
From (1)  and  (2)  we get,
PQ ∥ AC  and   SR ∥ AC  gives us   PQ ∥ SR
PQ = 1/2 AC   and   SR = 1/2 AC   gives us   PQ = SR
∴ We get PQ = SR and PQ ∥ SR  ——— (3)
Similarly by joining  BD  we will get
PS = QR and PS ∥ QR                    ——– (4)
From (3) and (4) we get both pairs of opposite sides of quad. PQRS are equal and parallel.
∴   PQRS is a parallelogram

(ii) Now  in  ∆PAS  and  ∆PBQ
∠A  =  ∠B                      ( each angle is 90° )
AP =  PB                       ( P is mid point of AB )
AS = BQ                        (∵  1/2 AD = 1/2 BC )
By S.A.S. congruence rule we get
∆PAS  ≅  ∆PBQ            ∴ Their corresponding parts are equal
PS  =  PQ         (c.p.c.t)
PS  =  QR   and    PQ  =  SR         (proved)
PS   =   PQ   =  QR   =   SR
All sides are equal
∴   PQRS is a rhombus

4. ABCD is a trapezium in which AB ∥ DC,   BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F . Show that F is the mid-point of BC.

Given: AB ∥ DC, BD is a diagonal ,
E is the mid-point of AD.
To prove:   CF = BF
Proof:    E is the mid-point of AD   (given)
and   EG  ∥  AB
Using the converse of mid-point theorem
we get G is the mid point of  BD
In   ∆BDC
G is the mid-point of  BD
GF  ∥  DC
Using the converse of mid-point theorem we get F is the mid point of BC.

5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively . Show that the line segments AF and EC trisect the diagonal BD.

Given: E is the mid-point of AB and F is the mid-point of CD
To prove: DP = PQ = QB
Proof:   AB = CD    (opposite sides of a parallelogram)
∴    1/2 AB  =  1/2 CD
∴   AE  =  CF        —— (1) ( E and F are mid-points)
Now AB  ∥  CD
∴  1/2 AB  ∥  1/2 CD
∴ AE  ∥ CF            ——(2) ( E and F are mid-points)
From (1) and (2) we get  AECF  is a  parallelogram
In   ∆ DBC
F   is the mid-point  of  DC    (given)
and   FP  ∥  CQ                           (∵ AF ∥ CE)
P is the midpoint of  DQ        (by converse of mid-point theorem)
∴ DP  =  PQ        –  ——–(3)
Similarly  in   ∆ BAP
BQ  =  PQ            ———-(4)
From   (3) and (4) we get
DP  =  PQ  =  BQ
∴ The line segments AF and EC trisect the diagonal  BD.

6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Given: P,Q,R,A are the mid-points of AB, BC, CD and DA
To prove: The line segments bisect each other
Proof: Join  PQ,  QR,  RS  and  SP
Also join PR  and  SQ
In ∆ ABC we have P and Q as mid-points
of sides AB and AC respectively
∴  PQ  ∥  AC  and  PQ = 1/2 AC       ——(1)
Similarly in ∆ ADC
RS  ∥  AC  and  RS  = 1/2 AC         ——–(2)
From (1) and (2) we get
PQ ∥ RS  and  PQ = RS
∴ PQRS is a quadrilateral. And a pair of opposite sides (PQ and RS) are equal and parallel
∴  PQRS   is  a  parallelogram
We know that the diagonals of a parallelogram bisect each other
Here PR and SQ bisect each other
So, the line segments joining the mid-points of the opposite sides of a quadrilateral. ABCD bisect each other

7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.  Show that     (i) D is the mid-point of AC        (ii) MD ⊥ AC       (iii) CM = MA = 1⁄/2 AB.

Given:   (i) ∠C = 90°         (ii) AM = BM and MD ∥ BC
To prove: (i) D  is the mid-point of AC
(ii) MD ⊥ AC
(iii) CM  =  MA  =  1/2 AB.
Proof:   In ∆ ACB we have
(i)  M is mid-point of AB    and      MD ∥  BC          (both are given)
Using the converse of mid-point theorem we get
D is the mid-point of AC

(ii) Since MD ∥ BC        (given)   and  AC is the transversal
∠MDA  =  ∠BCA                      (corresponding angles)
∴∠MDA  =  ∠BCA  =  90°       (given ∠BCA = 90°)
∴ MD ⊥ AC

(iii) In  ∆ ADM and  ∆ CDM  we have
∠ADM  =  ∠CDM                 (each angle is 90°)
MD = MD                              (common side)
AD = CD                                (D is mid-point of AC)
By S.A.S congruence rule   we get      ∆ ADM  ≅  ∆ CDM
∴ MA = MC                ( c.p.c.t )  ———- (1)
M is mid-point of AC
∴ AM = 1/2  AB                           ———–(2)
From  (1)  and (2)  we get
CM =  MA  =  1/2 AB